小天管理 发表于 2024年7月19日 发表于 2024年7月19日 求助,python3.11 调用 chatGLM2_6b 模型,单纯跑个 ChatGLM2-6B 的本地模型,但是就这只要已发消息就卡死了,难道是本地配置不够吗,求教求教,感谢 设备:macbook pro M2 32G main.py import tkinter as tk from tkinter import scrolledtext from gpt.OpenAI.openAI import get_openai_response from gpt.ChatGLM.chatglm_client import get_chatGLM2_6b_response def send_message(event=None): user_input = input_text.get() chat_history.insert(tk.END, f"You: {user_input}\n") input_text.set("") response = get_chatGLM2_6b_response(user_input) chat_history.insert(tk.END, f"Bot: {response}\n") # 创建主窗口 root = tk.Tk() root.title("Chat with OpenAI") # 创建聊天记录文本框 chat_history = scrolledtext.ScrolledText(root, wrap=tk.WORD) chat_history.pack(padx=10, pady=10, fill=tk.BOTH, expand=True) # 创建输入框和发送按钮 input_text = tk.StringVar() entry_box = tk.Entry(root, textvariable=input_text, width=50) entry_box.pack(padx=10, pady=5, side=tk.LEFT, expand=True) entry_box.bind('<Return>', send_message) send_button = tk.Button(root, text="Send", command=send_message) send_button.pack(padx=10, pady=5, side=tk.RIGHT) # 运行主循环 root.mainloop() chatglm_client.py import torch from transformers import AutoTokenizer, AutoModel # 确定设备是否支持 mps device = "mps" if torch.backends.mps.is_available() else "cpu" # 提前加载模型 print("Device:", device) print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained("./modles/chatglm-6b", trust_remote_code=True) print("Loading model...") model = AutoModel.from_pretrained("./modles/chatglm-6b", trust_remote_code=True).half().to(device) print("Model loaded.") def get_chatGLM2_6b_response(prompt): print(prompt) inputs = tokenizer(prompt, return_tensors="pt").to(device) attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else None print("Generating response...") outputs = model.generate(inputs.input_ids, attention_mask=attention_mask, max_length=50) print("Decoding response...") response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) return response 输出 启动后输出到’Model loaded.‘这一行 输入后输出到’Generating response...‘这一行就不动了。。。。 python main.py Device: mps Loading tokenizer... Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision. Loading model... Explicitly passing a `revision` is encouraged when loading a configuration with custom code to ensure no malicious code has been contributed in a newer revision. Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure no malicious code has been contributed in a newer revision. Loading checkpoint shards: 0%| | 0/8 [00:00<?, ?it/s]/Users/mutong/Documents/project/AI_Try/AI_first_try/conda/lib/python3.11/site-packages/transformers/modeling_utils.py:415: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature. return torch.load(checkpoint_file, map_location="cpu") Loading checkpoint shards: 100%|████████████████████████████████████████| 8/8 [00:10<00:00, 1.26s/it] Model loaded. Hello Generating response... The dtype of attention mask (torch.int64) is not bool 所以想请教这种情况是不是系统内存不够之类的原因
已推荐帖子