小天管理 发表于 2024年8月20日 发表于 2024年8月20日 最近的项目需要用到人脸识别 Landmark 和 face mesh ,调研了市面上主流的 NN 框架:MNN, NCNN, TNN, MediaPipe; MNN 阿里的,速度快,有个 MNNKit demo ,人脸关键点 106 个,单帧处理耗时在 3-5ms ; TNN 腾讯基于 NCNN 做的速度优化版本,有个 demo ,270+关键点,识别速度,单帧 3-5ms ,缺点关键点有点抖动; MediaPipe:谷歌开源的,有 473 点 face landmark ,在 iOS 平台识别速度 10-15ms 单帧;但安卓平台同配置手机 30-50ms ,CPU 占用也比 MNN 高 2-3 倍; 除了人脸识别,MediaPipe 还带了背景分割,头发分割等,缺点就是刚才说的性能可能有问题。MNN 的化只有一个人脸 106 点识别,没有其他官方 demo 。TNN 有快一年没更新了,所以不准备考虑。 本人刚接触深度学习,还不清楚如何训练模型和框架基础原理。MNN 和 MediaPipe 算是两个资料比较多的框架,准备从这个两个入手, 个人倾向 MediaPipe ,现成的 demo 功能比较多。 OK ,问题: MediaPipe 的性能问题存在在哪里,是模型的问题还是框架的问题? MNN 和 MediaPipe 推荐哪个,如果 MNN 做 face mesh ,有哪些快速可用的模型或代码?
已推荐帖子